Antinematodal Activities of Ingenane Diterpenes from Euphorbia kansui and their Derivatives against the Pine Wood Nematode (Bursaphelenchus xylophilus)

Jianxiao Shi^{a,b}, Zhixuan Li^b, Teruhiko Nitoda^a, Minoru Izumi^a, Hiroshi Kanzaki^a, Naomichi Baba^a, Kazuyoshi Kawazu^a, and Shuhei Nakajima^{a,*}

- ^a Graduate School of Natural Science and Technology, Department of Applied Bioscience and Biotechnology, Laboratory of Natural Products Chemistry, Faculty of Agriculture, Okayama University, Tsushima naka 3-1-1, Okayama 700–8530, Japan.
 Fax: +81-86-251-83 02. E-mail: snaka24@cc.okayama-u.ac.jp
 ^b College of Life Science, Northwest University, Xi'an 710069, People's Republic of China
- * Author for correspondence and reprint requests

Z. Naturforsch. 63c, 59-65 (2008); received June 15/July 25, 2007

Under the bioassay-guided method, two diterpenes, $3\text{-}O\text{-}(2'',3''\text{-}dimethylbutanoyl)-13-}O\text{-}dodecanoylingenol (1) and <math>3\text{-}O\text{-}(2'',3''\text{-}dimethylbutanoyl)-13-}O\text{-}decanoylingenol (2) isolated from Euphorbia kansui, showed a pronounced antinematodal activity against the nematode Bursaphelenchus xylophilus at the same minimum effective dose (MED) of <math>5\mu g$ per cotton ball and still displayed antinematodal activity at a dose of $2.5\mu g$ per cotton ball. Compounds 3-6 were obtained, and the structure of the new compound 6 was elucidated based on 1D-and 2D-NMR analyses and physicochemical data. Preliminary structure-biological activity relationships of ingenane-type compounds were deduced.

Key words: Euphorbia kansui, Antinematodal, Ingenane Diterpenes, Bursaphelenchus xylophilus